Others

[MSB-35]

Initial Single-Center Experience: Outcomes of Minimally Invasive Extracorporeal Circulation vs. Conventional Circuits in Cardiac Surgery

Ahmet Daylan¹, Ömer Faruk Rahman¹, Ayşe Daylan², Dağlar Cansu¹, Şahin Bozok¹

¹İzmir Bakırçay University, İzmir, Türkiye

²Çiğli Training and Research Hospital, İzmir, Türkiye

Cardiovascular Surgery and Interventions 2024;11(Suppl 1):MSB-35

Doi: 10.5606/e-cvsi.2024.msb-35 **E-mail:** vampir-07-duyma@icloud.com

Received: September 13, 2024 - Accepted: September 29, 2024

Objective: This study aimed to present our early experience with minimally invasive extracorporeal circulation (MiECC) circuits and compare it with conventional cardiopulmonary bypass (cCPB).

Methods: Two hundred thirty-nine patient registries (169 males, 70 females; mean age: 63.5 years) who underwent surgery were retrospectively analyzed between June 2021 and February 2024. All patients were operated by the same surgical team with a restrictive blood transfusion protocol.

Results: Forty-five (18.8%) cases were identified as MiECC. Most of the operations were coronary artery bypass grafting. Significant differences were observed between those operated on with MiECC and cCPB regarding the transfusion of red blood cell (RBC) suspensions and the total amount of drainage. No significant differences were observed in the duration of intubation, incidence of postoperative acute kidney injury, and intensive care unit or hospital stay. In geriatric patients, transfusion of RBC suspensions and drainage was significantly lower. Duration of intubation and intensive care unit or hospital stay did not reach statistical significance. In patients with an ejection fraction ≤45, transfusion of RBC suspensions were similarly low.

Table 1. MiECC vs cCPB			
	MiECC (n=45) (18.8%)	cCPB (n=195) (81.3%)	р
CABG*	31 (68.9%)	121 (62.1%)	
Valve surgery*	7 (15.6%)	29 (14.9%)	
Combined*	6 (13.3%)	42 (21.5%)	
Aort*	1 (2.2%)	3 (1.5%)	
Age**	63 (16)	64 (12)	0.380
CPB (min)**	113 (49)	115 (67)	0.465
Cross-clamp (min)**	77 (38)	78 (47)	0.747
EF ≤45***	5/45	46/195	
Age ≥60***	31/45	133/195	
Drainage (mL)*	300 (200)	400 (350)	0.001
Drainage ≥1000 mL (yes/no)	1/44	19/175	>0.05
RBC 0-1st day (units)**	0 (1)	1 (3)	0.001
RBC total (units)**	1 (2)	2 (3)	<0.001
Entubation duration (hours)**	9 (6)	9 (9)	0.077
ICU stay (days)**	8 (2.5)	3 (2)	0.939
Hospital stay**	7 (5)	7 (4)	0.190
Postoperative AKI (yes/no)	15/30	64/127	>0.05
Hospital mortality (yes/no)	4/41	17/174	>0.05
* n (percentage); ** Median(IQR); *** (n/tota	l).		

Conclusion: The utilization of MiECC resulted in a reduction in transfusion of RBC suspensions and postoperative drainage. No significant differences were observed in intubation time, postoperative acute kidney injury, hospitalization, or mortality. Although intubation time was observed to be shorter, no statistically significant result could be reached. There is a potential for bias in patient selection due to the potential benefits of MiECC. We believe that with a larger number of blinded studies, the benefits of MiECC can be demonstrated in more detail, particularly in specialized populations such as geriatric patients and patients with low EF.

Keywords: Cardiopulmonary bypass, cardiac surgery, geriatric, low ejection fraction, MiECC.

	MiECC	сСРВ	р
CPB (min)*	113 (51)	115 (63)	0.263
Cross-clamp (min)*	74 (40)	78 (41.5)	0.412
Drainage (mL)*	300 (200)	400 (425)	0.035
Drainage ≥1000 mL (yes/no)	1/30	17/115	>0.05
RBC 0-1st day (units)*	0 (1)	2 (3)	0.001
RBC total (units)*	1 (3)	3 (4)	0.002
Entubation duration (hours)*	9 (6)	11 (9)	0.05
ICU stay (days)*	3 (3)	3 (3)	0.954
Hospital stay*	7 (8)	7 (4.5)	0.611
Postoperative AKI (yes/no)	12/19	48/81	>0.05
Hospital mortality (yes/no)	4/27	15/114	>0.05

Table 3. MiECC vs cCPB in patients with low ejection fraction				
	MIECC	cCPB	р	
CPB (min)*	121 (66.5)	138 (50)	0.724	
Cross-clamp (min)*	86 (29.5)	90 (37)	0.329	
Drainage (mL)*	350 (225)	450 (225)	0.469	
Drainage ≥1000 mL (yes/no)	0/5	4/41	>0.05	
RBC 0-1st day (units)*	0 (0.5)	1.5 (3)	0.018	
RBC total (units)*	1 (2)	3 (3.75)	0.020	
Entubation duration (hours)*	10 (7.5)	12 (9.75)	0.199	
ICU stay (days)*	3 (1.5)	3 (3.75)	0.911	
Hospital stay*	7 (29)	7.5 (6.75)	0.936	
Postoperative AKI (yes/no)	0/5	14/30	>0.05	
Hospital mortality (yes/no)	0/5	6/38	>0.05	
* Median (IQR).				

References

- 1. Birdi I, Caputo M, Angelini GD, Bryan AJ. Inflammatory response and hemodilution during cardiopulmonary bypass: a comparison between conventional and miniaturized circuits. Ann Thorac Surg 1997;64:1526-1532. doi: 10.1016/s0003-4975(97)01031-3
- 2. Vohra HA, Whistance RN, Modi A, Ohri SK, Field ML. Miniaturized cardiopulmonary bypass: what is the evidence? Interactive CardioVascular and Thoracic Surgery, 2009;9:816-820. doi: 10.1510/icvts.2009.212597.